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In this paper the static fatigue problem for a circumferentially cracked hollow cylinder is 
examined. For this particula? configuration, stable crack growth, in the absense of any external 
forces, is determined for cylinders with axial components of residual stress which are com- 
pressive on the inner and outer radial surfaces and tensile in the cylinder wall. An initial sur- 
face crack which is deep enough to penetrate the compression strengthened surface region 
and enters the tensile zone may propagate in a stable manner until either sudden spontaneous 
failure occurs or the crack arrests. Since a portion of the crack near the cylinder surface will be 
closed because of the compressive residual stress field, an additional unknown in the problem 
is the extent of the crack surface contact. This crack surface contact length is determined by 
iteration on the integral equation which arises in the mathematical derivation for an embedded 
circumferential crack in a hollow cylinder. As an illustration of stable crack growth for this 
geometry with a realistic residual stress distribution, numerical results are presented for a 
hollow, soda-lime glass cylinder, based on crack growth rates in soda-lime glass exposed to 
water at 25 ~ C. Using the fracture toughness and slow crack growth characteristics for soda- 
lime glass, the conditions for no crack propagation, crack propagation leading to crack arrest, 
and catastrophic failure are established. 

1. In troduct ion  
It is quite well-known that the impact and fatigue 
resistance of most brittle structures can be significantly 
improved by introducing residual stresses which are 
compressive at the material surface. For example, in 
glasses these residual stresses can be created by thermal 
tempering or ion exchange techniques. However, brittle 
materials strengthened in this fashion appear to be 
especially susceptible to spontaneous fracture even in 
the absence of any applied loads. Such failures can be 
explained by the stable crack growth behaviour of 
deep surface cracks which have penetrated the com- 
pression strengthened surface of the material and 
entered into the tensile stress region which exists for 
structures in a state of self-equilibrium. Surface cracks 
with depths sufficient to exhibit stable propagation in 
surface compression strengthened structures, usually 
have been introduced by foreign object impact or 
severe scratching of the surface. 

The static fatigue behaviour of ceramics and glasses 
in corrosive environments [1-3] and in vacuum [4] have 
been extensively investigated. In these investigations 
careful experimental measurements were made to 
determine the crack velocity during subcritical crack 
growth under a variety of environmental and thermal 
conditions. This experimental information has in turn 
been utilized [5-7] in fracture analysis calculations 
which take into account extensive subcritical crack 
growth prior to catastrophic failure for externally 
loaded and thermally stressed structures. For situ- 
ations concerned with static fatigue in the absence of 

any external loads, similar failure calculations can be 
performed as long as the interaction between the crack 
and the internal residual stress field is properly taken 
into account. In [8] such an analysis is performed for 
a surface compression strengthened glass plate. 

In this paper an analysis similar to that given in [8] 
will be performed for a hollow circumferentially 
cracked cylinder (Fig. 1). The crack is axisymmetric 
and lies in a plane perpendicular to the cylinder axis. 
The crack may be either located on the inner radius or 
the outer radius of the cylinder. It is assumed that a 
parabolic residual stress distribution acting in the 
z-direction (Fig. 1) exists through the cylinder wall in 
the uncracked cylinder. This residual stress distribution 
realistically represents the type of stress field usually 
associated with thermal tempering. The magnitude of 
the residual stress on the inner and outer cylinder 
surfaces is given by a s. If a circumferential surface 
crack is introduced into this residual stress field, the 
crack will remain closed along its entire length as long 
as it is located entirely within the compressive region 
near the cylinder surface. However, if the crack tip 
enters the tensile region in the central portion of the 
cylinder wall, the crack will be cusp-shaped (Fig. 1) 
with a portion of the crack open (near the crack tip) 
and a portion of the crack closed. 

2. F o r m u l a t i o n  o f  t h e  c r a c k  p r o b l e m  
Solution of the problem depicted by Fig. 1 involves 
the general solution for an embedded axisymmetric 
circumferential crack in an infinitely long hollow 
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Figure 1 Hollow cylinder with an axisymmetric circumferential 
crack of length l. Parabolic residual stress distribution with surface 

magnitude a S . 

cylinder (Fig. 2). The inner and outer radii of  the 
cylinder are given by a and b, respectively, with the 
inner crack radius given by c and outer crack radius 
given by d. This problem has been solved for both 
symmetrical [9] and nonsymmetrical [10] axial stress 
distribution a z. For  the axisymmetrical stress distri- 
bution, the mixed boundary  value problem depicted 
by Fig. 2 results in an integral equation of the form 

- -  + k(r, t) g ( t )d t  = - -  naz(r  ) 
t r 

(c < r < d )  (1) 

where the unknown g(r), is the derivative of  the crack 
surface displacement in the axial z-direction given by 

g(r) = -~r uz(r 'O § (c < r < d )  (2) 

In Equation 1, the Fredholm kernel k(r, t) is a lengthy 
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Figure 2 Geometry for a hollow cylinder with an embedded axi- 
symmetric crack. 

expression which is given in [9], v is Poisson's ratio and 
# is the elastic shear modulus. In the following analysis 
the stress az will be the residual stress distribution 
denoted by o R which satisfies the equilibrium con- 
dition 

~rR(r )r  = (3) dr 0 

I f  we assume a parabolic residual stress distribution 
through the cylinder wall, then the residual stress is 
given by 

az(r) = aR(r) = a s [  6(r - a) (b  - r) - -  a)  ~ -- 1 (4) 

where as is the magnitude of  the compressive stress on 
the surfaces of  the cylinder (see Fig. I). In addition to 
Equation l, an auxiliary equation of  the form 

f f g ( t )  d t  = 0 (5) 

is necessary to assure single-valuedness of  the solution 
for the embedded crack problem. The details concern- 
ing the reduction of Equations 1 and 5 to a system of  
algebraic equations and their subsequent numerical 
solution is given in [9] and will not be elaborated 
further here. It  is sufficient to state that the stress 
intensity factors at both crack tips can be calculated 
very efficiently using these numerical methods. 

The crack contact length in the compressive zone will 
be specified as e and is an additional unknown. The 
physical condition which accounts for this unknown is 
the smooth closure condition of  the crack surfaces at 
r = a + e or r = b - e. Thus, the problem may be 
treated as an embedded crack problem with smooth 
closure assured by the condition 

K(a + e) = 0, o r K ( b - -  e) = 0 (6) 

where K is the usual stress intensity factor. In practice 
this condition is satisfied (for an internal edge crack) 
by fixing the location of  the crack tip at r = d (Fig. 2) 
and then determining the radial position r of  the crack 
tip at c by iteration such that K(c) = 0. The solution 
for an external edge crack can be obtained in a similar 
manner,  but in this case the position of the crack tip 
at r = d is varied until K ( d )  = 0. In this manner  the 
stress intensity factors for edge cracks of  various 
depths are obtained from the solution of  the embedded 
crack problem as well as the length of the crack contact 
z o n e  8. 

Fig. 3 is a plot of  the stress intensity factor solutions 
for internal and external circumferential edge cracks 
as a function of  crack tip position r 0 normalized with 
respect of  the cylinder wall thickness h (h = b - a). 
The crack length l is either given by l = d - a or 
l = b - c, depending on whether the crack originates 
from the cylinder inner radius or outer radius. The 
residual stress field used to generate these solutions is 
the one given by Equation 4. In Fig. 3 the results are 
presented for two different a : b ratios, a : b -- 0.9 and 
a : b = 0.7. It  can be seen that there is little difference 
between the magnitude of  the stress intensity factors 
at a : b = 0.9 or a : b -- 0.7. The main difference is seen 
in a : b  = 0.7, where the maximum stress intensity 
factor for an external edge crack in this residual stress 
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Figure 3 Stress intensity factors for internal and external edge 
cracks in a hollow cylinder subjected to parabolic residual stresses. 

field is noticeably greater than it is for an internal edge 
crack. With decreasing a:b, as the wall thickness 
increases, this effect becomes even more evident. The 
stress intensity factor for the edge crack is zero while 
the crack is totally encompassed by the compressive 
region. However, once the crack tip has entered the 
tensile zone, the stress intensity factor increases rapidly, 
reaches a maximum and then decreases to zero as the 
crack reaches the other side of the cylinder. 

Fig. 4 plots the value of the crack contact length e 
corresponding to the stress intensity factor solutions 
given in Fig. 3 for circumferential cracks in a cylinder 
with an a : b ratio of 0.9: The dashed line represents the 
crack length for cracks completely contained within 
the surface compression zone and simply increases 
linearly with increasing crack length. Once the crack 
tip completely penetrates this compressive region the 
contact length decreases with increasing crack length. 

3. The static fatigue problem 
With the stress intensity factors now known as a 
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Figure 4 Crack contact length s for  a ho l low cyl inder wi th parabol ic 
residual stresses, a : b = 0.9, h = b - a. 
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function of crack length I, it is possible to integrate 
empirical crack growth velocity expressions of the 
form 

dl 
d--~t = F(K) (7) 

to obtain the time to failure, provided that for the 
residual stress field of interest the value of the stress 
intensity factor K exceeds some minimum value KT. 
The KT (K threshold) values are known for many 
brittle materials and represent a K value below which 
no measurable crack growth can be detected. Thus, 
for a given internal residual stress state and an initial 
crack length li, K(li) > K T for any crack growth to 
take place. From the solution for K as a function of 
the crack length (Fig. 3), it is also possible to determine 
the minimum crack length necessary for any stable 
crack growth. This minimum crack length denoted by 
ll is determined from the condition 

K(I~) = KT, K'(IO > 0 (8) 

After stable crack growth has been initiated, the 
crack will grow until either the critical stress intensity 
factor Kic is reached and the cylinder fails in a cata- 
strophic manner, or the stress intensity factor decreases 
as the crack approaches the opposite cylinder wall 
and the crack arrests. Denoting the crack lengths at 
which catastrophic failure or arrest occurs as 12 and la, 
respectively, these two alternative conditions are 
determined from 

K(12) = Kic (9) 

K(la) = KT, K ' ( l a )  < 0 ( lO)  

By utilizing conditions (Equations 8 to 10) it is 
possible to integrate Equation 7 to obtain the time for 
crack arrest 

la dl 
Ta = ~i~ F(K) (11) 

or catastrophic failure 

t2 dl 
Tr = fl, F(K) (12) 

Even though Equation 11 may be useful for esti- 
mating whether crack arrest will occur, in practice 
crack arrest will also depend on the maximum velocity 
the crack attains during the stable crack growth. That 
is, if the crack velocity becomes too great, the running 
crack may pass completely through the "back-side" 
compressive zone, even though the K value may dip 
below K T. Since dynamic effects are neglected in this 
analysis, Equation 11 can be expected to hold only for 
those situations where the maximum K value does not 
come too close to Kic (relatively low crack velocities ). 
In these situations it is expected that dynamic effects 
will be negligible. 

4. N u m e r i c a l  r e s u l t s  
As a numerical example of stable crack growth for a 
circumferentially cracked hollow cylinder with a 
residual stress given by Equation 4, the static fatigue 
behaviour of soda-lime glass exposed to water at 25 ~ C 



will be used. In the following calculations the cylinder 
wall will be taken to have a thickness of 2 mm with an 
outer diameter of 4 cm. In addition it will be assumed 
that the circumferential crack originates on the inner 
radius of the hollow cylinder. 

Experimental measurements of the slow crack 
growth velocities in soda-lime glass are given in [3], 
where it was found that an empirical expression which 
adequately describes this slow crack growth behaviour 
is given by 

dl 
- -  = V0 exp [(CK, -- E) /RT]  (13) 
dt 

where l is the crack length, K~ the stress intensity 
factor, E = 1.088 • 105jmol -] (the activation 
energy), R = 8.32Jmol -~ and T = 298 K. For  soda- 
lime glass the crack growth data can be described by 
a bilinear curve fit between a fatigue limit KT = 2.49 • 
105Nm -3/2 and the critical stress intensity factor, 
K~c = 7.49 • 105Nm -3/2. For  the two regions, V0 
and C in Equation 13 are: 

In V0 = -1 .08 ,  C = 0.188,/(1 < 3.62 • 105Nm 3/2 

(14) 

lnV0 = 10.3, C = 0.110, K~ > 3.62 x N m  -3/2 

(15) 

(Note that in [8] there is a misprint concerning these 
constants.) 

The results in this paper are reported in a manner 
similar to the flat plate solutions given in [8]. Fig. 5 
shows results for stable crack growth where the initial 
crack length l~ is just sufficient to permit the crack to 
grow, i.e., Equation 8 is satisfied and thus li = l~ (see 

inset in Fig. 5). The dashed line labelled l~/h is a plot 
of this smallest initial crack length (ordinate on the 
right-hand side) as a function of the magnitude of  the 
surface compressive stress a~ (abscissa). For  surface 
compression above a certain critical value o- c the crack 
will grow in a stable manner to a length/2 (see inset) 
upon which the critical stress intensity factor will be 
attained and sudden failure will occur. In Fig. 5 the 
time to failure Tr (in days) as well as the crack length 
/2 is plotted. 

For surface compression below ao, yet greater than 
the minimum threshold level aT which is necessary for 
crack growth, the crack will grow in a stable manner 
by first accelerating and then decelerating as the stress 
intensity factor decreases (see inset). The crack length 
la at which the crack arrests, i.e. K1 = KT, as well as 
the time for this crack arrest to occur is shown in 
Fig. 5 as a function of the magnitude of the surface 
compression. It can be seen that the final arrested 
length of the crack will be greater than 75% of  the 
cylinder wall thickness. As would be expected for 
these minimum size cracks, the time for crack arrest 
will increase asymptotically to infinity for surface 
compression magnitudes approaching aT. 

The time to failure for crack lengths greater than the 
smallest value which will propagate, ll, is plotted in 
Fig. 6. In this figure the time to failure in seconds is 
plotted as a function of  the initial crack length li for 
different values of the surface compression stress at. In 
comparison with the time to failure for the flat plate 
given in [8], it can be seen that for the particular a : b 
ratio (a : b = 0.9) used in this numerical example, the 
time to failure for the hollow cylinder is very similar. 
Note that in [8] the time to failure is mislabelled. 
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Figure 5 Time  to fai lure Tf and  t ime  to  

ar res t  T~ for m i n i m u m  size c rack  l I which 

exceeds KT. Soda-l ime glass 4 cm d iameter  
cyl inder  exposed  to water ,  h = 2 m m .  
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Figure 6 Time-to-failure in a 4 cm diameter, 2 mm thick soda-lime 
glass cylinder as a function of the initial crack length li for various 
values of surface compression a,. 

5. Conclusion 
The numerical results presented in this paper indicate 
that for a surface compression strengthened hollow 
cylinder, static fatigue leading to spontaneous failure in 
the absence of any external loading is indeed a plausible 
failure mechanism. This reinforces the conclusions 
drawn in [8] regarding static fatigue in a flat plate. As 
indicated in Fig. 6, this static fatigue behaviour for 
reasonable values of surface compression can result in 
failures due to fracture in a short period of time. 

Even though it is often highly desirable to strengthen 

glasses by introducing compressive residual stresses at 
the structure surface, it should be recognized that this 
strengthening mechanism can lead to delayed failure if 
a surface crack is introduced that penetrates this 
protective zone. Cracks of this type can occur follow- 
ing foreign object impact and are generally very dif- 
ficult to detect. 

Since the crack growth velocities measured in glasses 
and ceramics are a sensitive function of the stress 
intensity factor, it is essential that this value be cal- 
culated accurately for the internal residual stress of 
interest. For structures that are in self-equilibrium this 
invariably means that a non-linear calculation must be 
performed to account for the crack surface contact 
which occurs for a portion of the crack surface in the 
compression strengthened zone. As demonstrated in 
[8] for a fiat plate and in this paper for a hollow 
cylinder, calculations for the stress intensity factors 
and subsequently the stable crack growth behaviour 
can be developed from the solutions for embedded 
cracks. 
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